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Abstract

This study illustrates how retention models can be used to accurately predict the retention behaviour of polydisperse macromolecules in
LC separations. It highlights that the number of experiments required can be drastically reduced when the relationship between the model
parameters and molecular structure parameters (e.g. molar mass) can be incorporated into one global model. A practical implication of this
work is that an appropriate model can then be used for the determination of molar-mass distributions for polydisperse samples. The globalised
model can predict retention time as a function of molar mass and gradient slope. Both the original and globalised versions of the model
were rigorously validated in terms of the difference between the predicted and experimental retention times. The original model had very
low residuals and there was no apparent dependence of the errors on the applied gradient, the molar mass or the retention times. Confidence
intervals for the model parameters (Sand lnk0) were determined using a bootstrapping analysis of the residual errors in the predicted retention
times. Confidence intervals were seen to broaden significantly as the mass of the polymer increased. The parameters were also seen to be
highly correlated. For the global model, retention-time residuals remained quite low, even when the number of experiments used to determine
the model parameters was reduced from approximately 100 to 10.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Retention models for HPLC

The theory of liquid chromatography has been developed
during several decades and some well-established descrip-
tions are now in place for the elution behaviour of solutes
in different chromatographic systems[1–3]. The retention
behaviour of a solute can be described in terms of the rela-
tionship between its retention factor (k) and the (isocratic)
mobile phase composition (i.e. the volume fraction of strong
solvent,ϕ). For reversed-phase chromatography, the loga-
rithm of the retention factor is found to vary in an approx-
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imately linear manner with the mobile phase composition
according to:

ln k = ln k0 − Sϕ (1)

wherek0 is the retention factor of the analyte in 100% of the
starting (weak) solvent andS is the solvent-strength param-
eter (a measure of the rate of change of the retention fac-
tor with increasing mobile phase strength)[4–6]. Depending
on the type of chromatography, other retention mechanisms
may be more appropriate. For example, for normal-phase
chromatography, a linear relationship between the logarithm
of the retention factor and the logarithm of the mobile phase
composition is predicted:

logk = logk1 − m logϕ (2)

wherek1 is the retention factor of the solute atϕ = 1 (i.e.
in 100% strong solvent) andm is the observed slope[7]. In
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both cases, the model parameters can be estimated by mea-
suring retention times at various (isocratic) mobile phase
compositions. If the model holds, then a linear (or approx-
imately linear) relationship should be found, according to
the relevant equation (Eqs. (1) or (2)above).

For the chromatographic characterisation of high-molar-
mass samples, such as polymers, isocratic chromatography
is not always practical, because there is not always a wide
enough range of mobile phase compositions where mean-
ingful (i.e. finite but non-zero) retention can be measured.
For example, for high-molar-mass polymers, the transition
between infinite retention and zero retention occurs within
a very narrow range of mobile phase compositions[8,9]. In
this case, gradient LC is more appropriate (although, since
elution behaviour remains sensitive to the mobile phase
composition, small errors in the gradient profile can lead to
significant errors in the observed retention time). The reten-
tion model can be solved using gradient LC retention data,
taking into account the shape of the gradient[3]. For a lin-
ear gradient (i.e.ϕ = A + Bt, whereA is the initial mobile
phase composition andB is the composition change in mo-
bile phase (ϕ) per unit time) and assuming a reversed-phase
retention mechanism (Eq. (1)), retention times for solutes
eluting within the gradient can be calculated as[3]:

tR = 1

SB
ln

{
1 + SBk(A)

[
tm − tD

k(A)

]}
+ tm + tD (3)

wherek(A) is the retention factor of the solute in the initial
mobile phase composition andtD andtm are the dwell time
of the system and the dead-time of the column, respec-
tively. Whenk(A) andSof a solute are known, the retention
time of that solute can be predicted under any gradient or
isocratic conditions. Conversely,S andk(A) (and thus also
k0) can be estimated when the retention time of a solute is
measured as a function ofB.

1.2. Chromatographic retention of polymers

The mechanisms controlling the chromatographic reten-
tion of large molecules, such as polymers, are still not fully
understood. It has been suggested that retention is controlled
by a precipitation–redissolution mechanism, where analyte
molecules are either fully retained or fully eluted, depend-
ing on the strength of the mobile phase[8,10,11]. Other
research suggests that the retention of macromolecules is
similar to the retention of smaller analyte molecules, i.e.
Eqs. (1) and (2)hold equally well for large as well as small
molecules[12]. We take the latter approach and test this by
testing the validity of the models (Eqs. (1) and (2)) for the
chromatographic retention of a series of polystyrene stan-
dards (different masses) in a non-aqueous reversed-phase
system. In previous research, we have compared experimen-
tal retention values to retention times that were predicted
using the reversed-phase model (Eqs. (1) and (3)) [13,14].
Excellent agreement between experimental and predicted re-
tention times was obtained, indicating that the model was

appropriate for this LC separation. In general, the mecha-
nisms involved in retention will depend on the sample, the
concentration of the analytes, the choice of mobile phase
and on the strength of the interaction between the sample
and the stationary phase. The validity of a particular reten-
tion mechanism (and the models associated with that mech-
anism) should be explored on a case-by-case basis[15,16].

1.3. Applying retention models to polydisperse analytes

No single molecular structure can be assigned to a
polydisperse sample. Instead, polydisperse analytes are
characterised by distributions of, for example, molar mass,
chemical composition, functional or end-groups, etc.[17].
The members of the distribution will have different reten-
tion behaviour across the distribution and no single set of
parameters (e.g.Sand lnk0) can adequately describe reten-
tion acrossthe distribution. For the RP model, there is a
strong relationship betweenSand lnk0 for homologous se-
ries such as homopolymers[6,13,14,18,19]. This means that
model parameters can only changeconcomitantlywithin a
distribution, so that the retention lines (lnk versusϕ) are
anchored to a common point (where all members of the
series have the same retention factor). This is known as the
critical mobile phase composition.

1.4. Determining correlations between model parameters
and molar mass

When the retention of a single (very narrow) polymeric
standard is measured as a function of the gradient slopeB,
the model parametersS and lnk0 for that standard can be
estimated. If the model is appropriate, then the retention
behaviour of that standard under any gradient or isocratic
conditions can be predicted. By estimatingS and lnk0
values for a range of standards (same polymer, different
masses), the relationship between the model parameters
and mass can be established. When there is a definable
correlation between the model parameters and molar mass,
it is possible to predict the parameters for a given polymer
within the mass range studied. The well-known Martin rule
predicts a linear relationship between lnk and the number
of repeat units on the macromolecule[20], although it has
been reported that it can fail for both low and high masses
[21]. Skvortsov and Trathnigg[22] have suggested that the
Martin rule only holds under special conditions, related to
the radius of gyration of the molecule. In this study, we have
examined the relationship between the RP model and molar
mass for a series of polymeric standards. Using confidence
intervals and weighted linear and non-linear regression anal-
ysis, we have found the best relationship between the model
and the molar mass of the polymer. Using this relationship,
we have developed a globalised version of the model, i.e.
made it applicable to arange of masses of the polymer
rather than just the specific masses that were measured.
With this global approach, we have been able to accurately
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describe the retention behaviour of polydisperse analytes.
We have also been able to dramatically reduce the number
of experiments that are required to understand and predict
the chromatographic retention behaviour of a polymer.

2. Experimental

Experiments were carried out on a Waters 2690 liquid
chromatograph. Gradient control, data acquisition and data
analysis were handled by Waters Millennium 3.2 software.
The stationary-phase was Supelco Discovery C18, particle
size 5�m, pore diameter 180 Å. Column dimensions were
150 mm× 2.1 mm i.d. and column temperature was main-
tained at 25◦C. The solvents were tetrahydrofuran (THF;
Biosolve, Valkenswaard, The Netherlands) and acetoni-
trile (ACN; Rathburn Walkerburn, UK). Both were HPLC
grade. The flow-rate was 0.2 mL/min. Samples consisted of
low-dispersity polystyrene (PS) standards (Polymer Labs.,
Church Stretton, UK). The sample-injection volume was
5�L and sample concentrations were 1.5 mg/mL. For the
calculation of the model parameters (S and lnk0), gradient
programmes from 5 to 95% THF in acetonitrile were run
over 20, 45, 60 and 90 min. Peak detection was performed
with a Waters PDA 996 diode-array detector. All samples
were run in duplicate. MATLAB (Mathworks, Natick, MA,
USA) and Microsoft Excel (Microsoft, Seattle, WA, USA)
were used for data analysis.

3. Results and discussion

3.1. Estimation of the model parameters S and ln k0

If the RP model is an appropriate model for the chro-
matographic separation of a particular analyte, then values
of S and lnk0 can be found that can predict the retention
behaviour of that analyte under any gradient or isocratic
mobile phase conditions (for the given LC system). By
measuring the retention time of the analyte under a number
of different gradient conditions, values forS and lnk0 that
give the least overall error in prediction can be estimated.
A simple (though somewhat tedious) approach to the esti-
mation of the model parameters is to plot the variation in
the error of prediction as a function ofS and lnk0. As S
and lnk0 are varied, the quality of the prediction changes
(with the most correct values of the two parameters giving
the smallest error between predicted and experimental re-
tention times). When the inverse of the error is plotted, the
maximum in the grid corresponds to the best combination
of Sand lnk0 for that sample (Fig. 1).

In our previous papers, we calculated optimal values of
Sand lnk0 using the solver tool in Microsoft Excel. Solver
uses a generalised reduced-gradient non-linear optimisation
procedure[23]. This approach is useful, because it can find
optimum values for any number of parameters reasonably

Fig. 1. Surface plot showing the variation in the SSQ−1 (i.e. the inverse of
the squared difference between the predicted and experimental retention
times) as a function ofS and lnk0.

quickly. However, the results are obtained from an empir-
ical stepwise process akin to computerised trial-and-error.
Solver can also be misleading, because local rather than ab-
solute optima are sometimes reported. This problem can be
reduced, but not totally avoided by starting the process sev-
eral times, using different initial estimates. The best results
are obtained if approximately correct values forSand lnk0
can be used as the starting point. In this work, an alternative
approach to estimatingSand lnk0, using non-linear regres-
sion, was used[24]. This approach is in some ways similar
to solver. It is also iterative and it can also get lost in local
optima. However, since the optimisation procedure is based
on the actual relationship between the model parameters, it
generally reaches a more-accurate optimum than solver and
it can do so more quickly. Both techniques gave quite simi-
lar values forSand lnk0 for the polystyrene standards (see
Table 1). For higher masses, the differences were larger, but

Table 1
Calculated parameters for the global model using different data sets

Molar mass of
standard

S ln k0

Solver Non-linear
regression

Solver Non-linear
regression

1 700 13.93 13.96 3.63 3.63
2 100 14.05 14.35 4.38 4.44
3 250 17.82 17.35 6.22 6.09
4 000 23.09 22.30 8.27 8.01
7 000 25.96 25.55 10.07 9.92

10 900 29.58 28.25 12.14 11.62
17 600 36.17 35.92 15.67 15.57
30 000 49.15 48.43 22.27 21.95
39 200 57.37 56.95 26.46 26.27
76 600 80.50 84.24 38.14 39.93

117 000 113.75 120.83 54.56 58.00
160 000 156.93 169.64 75.75 81.99
325 000 397.37 319.96 194.06 157.94
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they remained well within the calculated 95% confidence
interval for each standard (see discussion below).

3.2. Validation of the model

Using the model (Eq. (1)) and the estimates ofSand lnk0
from non-linear regression, a curve showing the relationship
between retention time and the gradient slopeB [for a given
initial mobile phase composition (A)] can be predicted.

Fig. 2 shows the predicted curves for all of the masses
measured, along with the experimental retention times mea-
sured at different gradient slopes. It is clear that the model
can describe the retention behaviour of all the standards,
in all the applied gradients. Errors in the prediction were
assessed more rigorously by calculating retention-time resid-
uals, i.e. the differences between the predicted and experi-
mental retention times. Residual errors for all of the polymer
samples as a function of B, are plotted inFig. 3, along with
an indication of the measurement error (i.e. experimental er-
ror) calculated from the 95% confidence interval of duplicate
measurements of each standard at each applied gradient.

The residual errors (errors in prediction) are quite depen-
dent on the measurement errors and increase with increasing
measurement error. In most cases, residual errors are well
within the experimental error. This indicates that the model
describes the retention behaviour of these samples very well,
since the error appears to be mainly due to experimental
error rather than any error in the model. The two measure-
ments with the largest residuals correspond to the duplicate
injections of the PS 1700 standard eluting from the shal-
lowest gradient (5–95% THF in ACN in 90 min). The chro-
matographic peaks corresponding to these measurements are
broad and flat because selectivity in this mass range and un-
der these chromatographic conditions is very high[14]. The
true peak top was therefore difficult to determine for these
peaks and so the measurement error was quite large. When

Fig. 2. Predicted curve for the relationship between retention time and
gradient slopeB for a series of polystyrene standards. The points corre-
spond to the equivalent experimental values.

measuring the retention time of a polydisperse sample, it is
assumed that the peak maximum corresponds to the aver-
age mass of that standard, i.e. itsMp value. While this can
be a reasonable assumption for Gaussian-shaped chromato-
graphic peaks, it is not always the case for asymmetrical
peaks (coupling the separation to a mass spectrometer over-
comes this problem). Residual errors were also plotted as a
function of molar mass and retention time. In all cases, er-
rors were low, non-systematic and comparable to the mea-
surement error. The low, non-biased nature of the residuals
in Fig. 3 indicate that: (a) the RP model is an appropriate
model for an accurate description of the chromatographic
separation in question and (b) the model works equally well
for all gradient slopes and molar masses within the ranges
that were tested.

3.3. Determination of confidence intervals for estimated
S and ln k0 values using bootstrapping analysis

Confidence intervals for each of theSand lnk0 estimates
were determined using external bootstrapping analysis[25].
Bootstrapping analysis uses retention time residuals to gen-
erate 1000 new data sets where:

tR,boot = tR,predicted+ �̃tR

where�̃tR is a noise data point generated by:

�̃tR,i = |�tR,i|√
1 − hii

εi

where|�tR,i| is the retention time residual calculated from
non-linear regression,εi a random number taken from aN(0,
1) Gaussian distribution, andhii a value between 0 and 1
and is a measure of the model leverage for the residuali (the
model leverage is an indication of the influence a given point
has on the estimation of the model parameters the higherhii

is, the more that point influences the model).

Fig. 3. Residual errors in prediction using the RP model and the calculated
values ofS and lnk0 (dots) and the corresponding measurement errors
(solid bars).
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The new data set (usingtR,boot as the retention time) is
again fitted using non-linear regression to give new estima-
tions of S and lnk0 (Sboot and lnk0,boot) that are different
from the original estimation (Sbest and lnk0,best). This pro-
cedure was repeated 1000 times, to give 1000 separate esti-
mations ofSboot and lnk0,boot. Examples of the estimations
are given inFig. 4. The lines represent the range of (highly
correlated) values ofS and lnk0 that can predict the reten-
tion time of a particular sample to within 5% of the experi-
mentally measured value.

Confidence intervals were seen to get significantly larger
as molar mass increased; in other words, the range ofSand
ln k0 values that can reasonably estimate retention times gets
broader as mass increases. The confidence intervals prove
that both the non-linear regression and Solver approaches
to the estimation ofS and lnk0 (Table 1) give statistically
similar results.Fig. 5 shows the estimated best values ofS
and lnk0 and their confidence intervals for all of the stan-
dards. The strong correlation between the parameters for the
homologous series is clear. This correlation is useful be-
cause it simplifies the model (since, if one of the parameters
is known, then the other can be predicted). The correlation
also proves the existence of a critical mobile phase compo-

Fig. 4. Values ofS and lnk0 calculated using external bootstrapping
analysis: (a) PS 1700; (b) PS 325 000; (–�–) corresponds to the optimum
calculated value.

Fig. 5. Correlation betweenSand lnk0 for all the standards studied. Points
correspond toSbest and lnk0,best calculated using non-linear regression
(seeTable 1also). Lines correspond to the confidence intervals calculated
using external bootstrapping analysis.

sition where all members of a homologous series co-elute,
regardless of their lnk0 value. This is a particular form of
isocratic chromatography called critical chromatography. Its
relevance and its link to the model have been discussed in
more detail in earlier papers[13,19].

3.4. Creating a global model to predict retention
times as a function of molar mass

From the original model, ifS and lnk0 are known for
a particular standard, retention time can be calculated as a
function of the mobile phase conditions (i.e.A andB), i.e.
tR,i = g(Si, ln k0,i, A, B). Sand lnk0 are estimated for each
standardi, by measuring its retention timetR,i at different
gradient slopesB. This approach can only be used to pre-
dict the retention behaviour of specific samples whereSand
ln k0 are known or can be estimated. The model, in this case,
is rather limited in its application, because it cannot predict
the retention behaviour of polydisperse samples, i.e. sam-
ples from the same homologous series with different molar
masses. If the model could be expanded, so that the relation-
ship between the model parameters and molar mass could
be established, then the model would become much more
versatile. In that case, we would have aglobal version of
the model, represented bytR,i = f(B, A, M, γ1, . . . , γn),
whereM is molar mass andγ1–γn are the parameters de-
scribing the relationship between the model parameters and
molar mass. One function could then describe the retention
behaviour ofall members of the polymeric series (within
the mass range where the global model is valid). The effects
of both molar mass and molar-mass distribution (polydis-
persity) on the chromatographic separation could then be
predicted.

Since we already know that there is a strong correla-
tion betweenSand lnk0 (Fig. 5), the slope and intercept of
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this line are used as two of the parameters (γ1 andγ2) in
the global model. To link the parameters with molar mass,
a relationship between one of the parameters and molar
mass is also required. In this study, we have tested various
(weighted) relationships between lnk0 and molar mass us-
ing linear and non-linear regression analysis and modified
simplex searches. Weighting was assigned according to the
confidence intervals determined by bootstrapping analysis.
Thus,Sand lnk0 values that had small confidence intervals
were more heavily weighted than values that had large con-
fidence intervals. The relationship between molar mass and
ln k0 was difficult to describe using one straight line, even
using weighted points. lnk0 values increased steeply with
increasing mass in the lower mass region. The curve then
levelled off for molar masses above approximately 4000.
When all the masses were tested at once, weighted linear
regression did not give a good prediction of the relationship
between molar mass and lnk0. Because the confidence inter-
vals of low-molar-mass standards were much smaller than
confidence intervals for high-molar-mass standards, the line
was forced to go through low-molar-mass points, at the ex-
pense of higher molar masses. This resulted in a bad fit of
the lnk0 versus molar-mass relationship (seeFig. 6) and ul-
timately in a global model that could not predict accurate
retention times over the entire mass range.

In a second approach, the lnk0 versus molar-mass rela-
tionship was taken to be bi-linear, i.e. split into two separate
straight-line relationships, with a ‘transition mass’ (Mc) at
which there is a switch from one line to the other. Non-linear
regression was not suitable for the determination of param-
eters for the bi-linear relationship, because the discontinuity
of the transition point resulted in it being over-sensitive to
the starting values. A modified simplex-search method[26]
gave robust results that did not depend on the starting values
of the parameters. This approach again used weighted data
and could estimate the parameters to describe the two sepa-
rate linear relationships between mass and lnk0, as well as
the critical mass (Mc) where the transition between the two
lines took place. A much better fit was found using this ap-
proach and weighted residuals for the line were small.Fig. 6
compares the fit of the linear and bi-linear models. There
is no physical meaning of the critical molar mass, i.e. the
fit is mathematical rather then based on any real transition
in the polymeric series. However, for the lower molar-mass
region in particular, the bi-linear model worked better than
the simple linear relationship (or other relationships based
on continuous curves). The bi-linear model intersects the
confidence intervals of all of the standards spanning the en-
tire molar-mass range thus providing a much-more-accurate
estimate of the relationship between lnk0 and molar mass
(Table 2).

3.5. Predicting retention times using the global model

Using the global model (i.e. the bi-linear relationship
between molar mass and lnk0 and the S versus lnk0

Fig. 6. Linear (dashed line) and bi-linear (solid line) curves for the lnk0

vs. molar mass relationship: (a) entire molar-mass range and (b) low
molar-mass region.

Table 2
Definitions of the bi-linear model parameters

Parameter Definition

γ1 Intercept of the lnk0 vs. mass correlation in
the low mass range, i.e. whenM ≤ γ4

γ2 Slope of the lnk0 vs. mass correlation in the
low mass range, i.e. whenM ≤ γ4

γ3 Slope of the lnk0 vs. mass correlation in the
high mass range, i.e. whenM ≤ γ4

γ4 Transition mass (Mc)
γ5 Intercept of theS vs. lnk0 correlation
γ6 Slope of theS vs. lnk0 correlation
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correlation), the retention time of a sample of the given
polymer of any mass and polydispersity can be predicted
(within the range of masses covered by the model). The
retention-time residuals calculated using the global model
are given in Fig. 7 and should be compared with the
retention-time residuals calculated using the non-global ap-
proach (i.e.Sand lnk0 estimated for single standards) given
in Fig. 3.

When the global approach is used, the residual error in-
creases. This is becauseSand lnk0 estimates are no longer
optimised one by one, but are calculated from the relation-
ship between molar mass and the model. Some increase
in the error of the prediction is therefore to be expected.
However this is compensated by the enhanced versatility
of the model. In general, the residuals remain reasonably
low. Residuals were less than 60 s in all cases and less than
20 s in most cases (note that the retention times were long).
The maximum relative residual was 3.2%, and the median
relative residual was only 0.5%. The parameters of the
global model are particular to a given polymer, in a given
chromatographic system (in this case RPLC of polystyrene
in THF–ACN). However, with further experimental work,
other homologous series in other chromatographic systems
can easily be characterised. As long as there is some way to
describe the change in retention behaviour across a homolo-
gous series, it should be possible to find a global model. If a
mass spectrometer can be coupled (off-line or on-line) to the
separation, it is no longer necessary to use narrow disper-
sity standards of known molar mass, since the relationship
between mass and retention time can be easily established
from the MS data. This opens the way to model the re-
tention behaviour of novel homopolymeric (and possibly
co-polymeric) polydisperse samples. One important issue
here is the number of experiments required to characterise
a particular polymer. If the number of experiments that are

Fig. 7. Retention time residuals (dots) calculated using the global model.
Solid lines correspond to the measurement error (as inFig. 3). All
experimental results are shown.

needed for each characterisation can be reduced (without
any significant reduction in the accuracy of the model), then
the application of retention models to polydisperse systems
will become much more attractive to the polymer analyst.

3.6. Reducing the number of experiments required

Using the global model (functionf), retention can be
described as a three-dimensional surface, such as the one
in Fig. 8 (the initial mobile phase compositionA is kept
constant). The surface of this function is quite smooth, in-
dicating that the relationship betweenB, molar mass and
retention time changes in a reasonably predictable fashion.
This suggests that the number of data points required to
define the surface can be decreased, without compromising
the accuracy of the prediction. In the original procedure
(calculating model parameters for individual standards),
thirteen different standards were used and in each case
four different gradient slopes were applied. Each measure-
ment was performed in duplicate, giving over one hundred
measurements. This is a significant amount of experimen-
tal work. If the number of experiments required could be
reduced, many more systems could be characterised, with
much lower costs (in terms of time and consumables).

The global model requires six parameters,γ1–γ6 to pre-
dict the effect of molar mass on retention behaviour within
the model. These parameters are taken from the slope and
intercept values of the correlations, plus two experimental
variables, i.e. the initial mobile phase compositionA and the
gradient slopeB. The system parameterst0 andtD must also
be known or measured. In principle therefore, only six mea-
surements are required to calculate the parametersγ1–γ6 of
function f. When choosing the most-useful experiments for
a reduced data set (i.e. the experiments that give the most
information), the shape of the function inFig. 8 must be
considered. Measurements are required to span the surface
(in terms of mass andB values), rather than focus on one

Fig. 8. Surface plot of the global modelf.
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Table 3
Details on the reduced data sets

Data set 2 Data set 3 Data set 4

Masses B values Masses B values Masses B values

1 700× 2 All 1 700 × 2 All 1 700 0.000167; 0.00025
2 100× 2 2 100× 2 3 250 0.000167; 0.00025; 0.00033
3 250× 2 3 250× 2 4 000 0.000167
4 000× 2 4 000× 2 10 900 0.000167
4 000× 2 10 900× 2 39 200 0.00033

10 900× 2 39 200× 2 325 000 0.00025
39 200× 2 325 000× 2
76 600× 2

325 000× 2

Table 4
Calculated parameters for the global model using different data sets

Data set N Parameters of the global model Relative residuals (%)

γ1 γ2 γ3 γ4 γ5 γ6 Median Maximum

1 104 0.47 0.0018 0.0007 4000 5.20 2.00 0.5 3.2
2 72 0.41 0.0018 0.0007 4132 5.56 2.00 0.7 3.0
3 56 −0.56 0.0024 0.0008 2947 5.56 2.00 0.6 4.5
4 9 0.17 0.0021 0.0008 4000 6.82 1.98 0.7 3.1

particular area. The measurements that were used in each
data set are given inTable 3.

Table 4shows four different data sets that were used to
predict the parametersγ1–γ6. Data set 1 uses all available
(104) measurements, to calculate the parameters of function
f (this corresponds to the residual plot inFig. 7). Data sets
2–4 use a limited number of data points (seeTable 3) for
the determination of the parametersγ1–γ6. The quality of
the fit for data sets 2–4 are compared by comparing the
relative residual errors (maximum and median error) in the
retention-time predictions.

Fig. 9shows the residual errors for the final data set (nine
measurements). It is clear that drastically reducing the num-

Fig. 9. Residual errors calculated using the global model and data set 4
to define the functionf (see alsoTables 3 and 4).

ber of measurements does not adversely affect the predictive
quality of the model. The maximum relative error was as
low when only nine measurements were used to determine
the parameters of functionf, as when all 104 measurements
were included in the data set.

4. Conclusions

We have shown, through rigorous validation, that the
RP model works very well for the characterisation of
polystyrene in RPLC. We have also shown that by making
the link between the model and molar mass, the retention
models become more general and therefore, more useful
predictive tools. A drastic reduction in the number of ex-
periments that are necessary to characterise a polymer sam-
ple was possible using this generalised (or global) model,
without jeopardising the quality of the prediction. This re-
duction in the experimental workload, along with the use
of a mass spectrometer, opens the way for the characterisa-
tion of many more polydisperse macromolecular systems,
including novel and unknown samples. To investigate the
applicability of this approach to a wider range of charac-
terisations, other polymer separations need to be studied,
including some that require other predictive models, to de-
termine if our approach remains valid and to help improve
our general understanding of the retention behaviour of
macromolecules.
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